Friction in the Bolted Joint

When a threaded fastener is tightened, the induced tension results in friction under the head of the bolt and in the threads. It is generally accepted that as much as 50% of the applied torque is expended in overcoming friction between the bolt head and the abutting surface and another 30% to 40% is lost to friction in the threads. As little as 10% of the applied torque results in useful work to tension the bolt.

Given that up to 90% of the applied torque will be lost to friction, it follows that any changes in the coefficient of friction resulting from differences in surface finish, surface condition and lubrication can have a dramatic effect on the torque versus tension relationship. Some general points can be made:

- Most torque tightened joints do not use washers because their use can result in relative motion between the nut and washer or the washer and joint surface during tightening. This has the effect of changing the friction radius and hence affects the torquetension relationship. Where a larger bearing face is required then flange nuts or bolts can be used. If washers are to be used, hard washers with a good fit to the shank of the bolt give lower and more consistent friction and are generally to be preferred.
- Degreasing fasteners of the film of oil usually present on them as supplied will decrease the tension for a given torque and may result in shear of the fastener before the desired tension is achieved.
- Super lubricants formulated from graphite, molybdenum disulphide and waxes result in minimal friction. Unless allowance is made in the specified tightening torque, the induced tension may be excessive causing the bolt to yield and fail. However, used in a controlled manner, these lubricants serve a useful purpose in reducing the torque to produce the desired tension meaning that a lower capacity tightening tool can be used.
- For reasons of appearance or corrosion resistance, fasteners may be plated. These treatments affect the coefficient of friction and therefore the torque versus tension relationship.
- Friction is often deliberately introduced into the fastener to reduce the possibility of loosening due to vibration. Devices such as lock-nuts must be taken into account when establishing the correct tightening torque.

As a rough guide, the calculated tightening torque should be multiplied by the factor from the table below according to surface treatment and lubrication.

		Surface Condition of Bolt			
		Untreated	Zinc	Cadmium	Phosphate
	Untreated	1.00	1.00	0.80	0.90
	Zinc	1.15	1.20	1.35	1.15
	Cadmium	0.85	0.90	1.20	1.00
	Phosphate and oil	0.70	0.65	0.70	0.75
	Zinc with wax	0.60	0.55	0.65	0.55

Recommended Maximum Torque Values

The information supplied here is intended to be an acceptable guide for normal conditions. For critical applications, further information and research will be necessary. The following basic assumptions have been made:
a. Bolts are new, standard finish, uncoated and not lubricated (other than the normal protective oil film)
b. The load will be 90% of the bolt yield strength
c. The coefficient of friction is 0.14
d. The final tightening sequence is achieved smoothly and slowly

If lubrication is to be applied to the nut/bolt, multiply the recommended torque by the appropriate factor shown in the table on page 4. Alternatively, use the Torque/Tension Calculator on the Norbar website (shown on page 5) which enables fastener and friction conditions to be modified with ease.

	BOLT GRADE									mm
	3.6	4.6	5.6	5.8	6.8	8.8	9.8	10.9	12.9	
	Torque in $\mathrm{N} \cdot \mathrm{m}$									
M 1.6	0.05	0.07	0.09	0.11	0.14	0.18	0.21	0.26	0.31	3.2
M 2	0.11	0.14	0.18	0.24	0.28	0.38	0.42	0.53	0.63	4
M 2.5	0.22	0.29	0.36	0.48	0.58	0.78	0.87	1.09	1.31	5
M 3	0.38	0.51	0.63	0.84	1.01	1.35	1.52	1.9	2.27	5.5
M 4	0.71	0.95	1.19	1.59	1.91	2.54	2.86	3.57	4.29	7
M 5	1.71	2.28	2.85	3.8	4.56	6.09	6.85	8.56	10.3	8
M 6	2.94	3.92	4.91	6.54	7.85	10.5	11.8	14.7	17.7	10
M 8	7.11	9.48	11.9	15.8	19	25.3	28.4	35.5	42.7	13
M 10	14.3	19.1	23.8	31.8	38.1	50.8	57.2	71.5	85.8	17
M 12	24.4	32.6	40.7	54.3	65.1	86.9	97.9	122	147	19
M 14	39	52	65	86.6	104	139	156	195	234	22
M 16	59.9	79.9	99.8	133	160	213	240	299	359	24
M 18	82.5	110	138	183	220	293	330	413	495	27
M 20	117	156	195	260	312	416	468	585	702	30
M 22	158	211	264	352	422	563	634	792	950	32
M 24	202	270	337	449	539	719	809	1,011	1,213	36
M 27	298	398	497	663	795	1,060	1,193	1,491	1,789	41
M 30	405	540	675	900	1,080	1,440	1,620	2,025	2,430	46
M 33	550	734	917	1,223	1,467	1,956	2,201	2,751	3,301	50
M 36	708	944	1,180	1,573	1,888	2,517	2,832	3,540	4,248	55
M 39	919	1,226	1,532	2,043	2,452	3,269	3,678	4,597	5,517	60
M 42	1,139	1,518	1,898	2,530	3,036	4,049	4,555	5,693	6,832	65
M 45	1,425	1,900	2,375	3,167	3,800	5,067	5,701	7,126	8,551	70
M 48	1,716	2,288	2,860	3,813	4,576	6,101	6,864	8,580	10,296	75
M 52	2,210	2,947	3,684	4,912	5,895	7,859	8,842	11,052	13,263	80
M 56	2,737	3,650	4,562	6,083	7,300	9,733	10,950	13,687	16,425	85
M 60	3,404	4,538	5,673	7,564	9,076	12,102	13,614	17,018	20,422	90
M 64	4,100	5,466	6,833	9,110	10,932	14,576	16,398	20,498	24,597	95
M 68	4,963	6,617	8,271	11,029	13,234	17,646	19,851	24,814	29,777	100

Units to be converted	S.I. Units		Imperial Units			Metric Units	
	$\mathrm{cN} \cdot \mathrm{m}$	$\mathrm{N} \cdot \mathrm{m}$	ozf•in	$\mathrm{Ibf} \cdot \mathrm{in}$	$\mathrm{lbf} \cdot \mathrm{ft}$	$\mathrm{kgf} \cdot \mathrm{cm}$	$\mathrm{kgf} \cdot \mathrm{m}$
$1 \mathrm{cN} \cdot \mathrm{m}=$	1	0.01	1.416	0.088	0.007	0.102	0.001
$1 \mathrm{~N} \cdot \mathrm{~m}=$	100	1	141.6	8.851	0.738	10.20	0.102
$1 \mathrm{ozf} \cdot \mathrm{in}=$	0.706	0.007	1	0.0625	0.005	0.072	0.0007
$1 \mathrm{lbf} \cdot \mathrm{in}=$	11.3	0.113	16	1	0.083	1.152	0.0115
$1 \mathrm{lbf} \cdot \mathrm{ft}=$	135.6	1.356	192	12	1	13.83	0.138
$1 \mathrm{kgf} \cdot \mathrm{cm}=$	9.807	0.098	13.89	0.868	0.072	1	0.01
$1 \mathrm{kgf} \cdot \mathrm{m}=$	980.7	9.807	1389	86.8	7.233	100	1

FORCE

lbf $\times 4.45=\mathrm{N}$
$\mathrm{N} \times 0.225=\mathrm{lbf}$

FLOW
$1 / \mathrm{s} \times 2.119=\mathrm{cu} \cdot \mathrm{ft} / \mathrm{min}$ $\mathrm{cu} \cdot \mathrm{ft} / \mathrm{min} \times 0.472=\mathrm{I} / \mathrm{s}$

PRESSURE
$\mathrm{lbf} / \mathrm{in}^{2} \times 0.069=\mathrm{bar}$
bar $\times 14.504=\mathrm{lbf} / \mathrm{in}^{2}$

POWER
$h p \times 0.746=k W$
$\mathrm{kW}=\frac{\mathrm{N} \cdot \mathrm{m} \times \mathrm{rev} / \mathrm{min}}{9,546}$

Formulae

Accepted formulae relating torque and tension, based on many tests are:-

For Imperial Sizes

$$
\mathrm{M}=\frac{\mathrm{P} \times \mathrm{D}}{60} \quad \begin{aligned}
& \mathrm{M}=\text { torque } \mathrm{lbf} \cdot \mathrm{ft} \\
& \mathrm{P}=\text { bolt tension } \mathrm{lbf}
\end{aligned}
$$

For Metric Sizes

$\mathrm{M}=$ torque $\mathrm{N} \cdot \mathrm{m}$
$M=\frac{P \times D}{5000}$
$P=$ bolt tension Newtons
$D=$ bolt diameter (mm)

These formulae may be used for bolts outside the range of the tables.

Formula for Calculating the Effect of Torque Wrench Extensions

$M 1=M 2 \times L 1 / L 2$

Where $L 1$ is the normal length and $L 2$ is the extended length, $M 1$ is the set torque and $M 2$ the actual torque applied to the nut.

Example

The required torque on the fastener is $130 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 2)$ but what do you set on the torque wrench scale?

$$
L 1=500 \quad L 2=650
$$

(units of length not important, this is ratio)
$M 1=130 \times 500 / 650$
$\mathrm{M} 1=100$

For further information and guidance on converting torque and calculating the effect of torque wrench extensions download our purpose built applications for iPhone and Android.

