

ROTARY TORQUE TRANSDUCER AND AMPLIFIER

FOR USE WITH ELECTRONIC TRANSDUCER SYSTEM (E.T.S) DEDICATED TRANSDUCER SYSTEM (D.T.S)

OPERATORS HANDBOOK (PART NO. 34268)

ISSUE 2

MODELS COVERED BY THIS HANDBOOK_

XXXXX.AMP	Transducer calibrated for use with the Electronic Transducer System (ETS).
XXXXX.DTS	Transducer calibrated for use with the Dedicated Transducer System (DTS).

CONTENTS

PAGE

Introduction	2
Specification	2
Amplifier and Transducer Connections	3
Amplifier Controls	4
Amplifier Pin Layout	4
Rotary Torque Transducer Wiring Diagram	5
Transducer Lead for ETS	6

ROTARY TORQUE TRANSDUCER AND AMPLIFIER

For use with the ETS measuring system, the Rotary Torque Transducer comes with its own matching amplifier module and share the same serial and model number. Transducers can be calibrated in either Nm, lbf ft or lbf ins as standard.

For use with the DTS measuring system, the amplifier is built into the DTS instrument.

The transducer shaft is made from heat treated stainless steel onto which strain gauges are bonded and wired to form a wheatstone bridge. The strain gauges vary their resistance in direct proportion to the torque applied. The small change in resistance causes a change in voltage across the bridge that is then amplified by the amplifier module.

The amplifier module is calibrated to each transducer and at its heart is an Instrumentation Amplifier. Housed within the amplifier module are the bridge balance potentiometers, gain setting potentiometer and bridge test potentiometer along with the range and decimal point coding resistors. The whole is potted in silicon rubber within a plastic shell.

The amplifier is supplied with +/- 10V and a constant current of 20mA by the ETS/ DTS. This is delivered to the bridge via the zero network. The output voltage from the amplifier is fed to the internal circuitry of the ETS.

SPECIFICATION _____

Accuracy	See calibration cetificate supplied with transducer.		
Amplifier Output	Adjusted at call torque	ibration to give correct outpu	t reading at full scale
Amplifier Power Requirement	+/- 10v D.C. Regulated		
Constant Current	20mA +/01 mA		
Operating Temperature Range	-10ºC - +50ºC		
Storage Temperature Range	-20ºC - +70ºC		
Temperature Co-efficient	<+/- 0.01%/ºC. <+/- 0.03%/ºC.	Full Scale Defection on zero Full Scale Defection on spar	1
Maximum working overload	120% of rated of	capacity	
Absolute maximum torsion	150% of rated of	capacity	
Maximum Rotational Speed			
	Drive	Rotary capacity	Maximum speed

Drive	Rotary capacity		city	Maximum speed
(inches)	N.m	lbf.ft	lbf.ins	(r.p.m.)
¹∕₄ Sq	15	10	100	5000
1⁄4 Hex	15	10	100	5000
³∕₀ Sq	100	75	1000	2500
1∕₂ Sq	150	100	1000	2500
1∕₂ Sq	250	150	-	2500
³∕₄ Sq	800	500	-	1500
1 Sq	1500	1000	-	1500

AMPLIFIER AND TRANSDUCER CONNECTIONS

For DTS Rotary Transducers this section does not apply. See DTS instrument handbook

AMPLIFIER _____

- Pin 1 Constant current 20mA.input to amplifier
- Pin 2 +10 volt supply
- Pin 3 Amplifier output
- Pin 4 Select decimal point output to ETS.
- Pin 5 0v common, (Connected to Pin B of Transducer via Transducer lead).
- Pin 6 Input from Strain Gauge Bridge, (Connected to Pin C of Transducer via Transducer lead).
- Pin 7 Select Range output to ETS.
- Pin 8 Input from Strain Gauge Bridge, (Connected to Pin D of Transducer via Transducer lead).
- Pin 9 -10 volt supply
- Pin 10 Test switch input, Shorted to Pin 11 when Test button on ETS is pressed.
- Pin 11 Supply to Bridge from amplifier, (Connected to Pin A of Transducer via Transducer lead).
- Pin 12 Not Used
- Pin 13 Bridge Balance, (Connected to Pin C of Transducer via Transducer lead).

AMPLIFIER CONTROLS

The adjustments available are as follows:-

- Fine Zero To remove any temperature drift effect or non zero reading.
- Coarse Zero Used for initial bridge balancing, this potentiometer is covered by the label and should not need adjustment.
- Test When the TEST switch on the ETS back panel is pushed and held in, the ETS display should read the full scale capacity to which the transducer has been calibrated. This is for indication purposes only and not a calibration check. This potentiometer is covered by the label and should only need adjustment if the span potentiometer is adjusted.
- Span This potentiometer is used to calibrate the amplifier to the transducer when the full scale torque is applied to the transducer. This potentiometer is covered by the label and should only need adjustment if recalibrating the transducer.

AMPLIFIER PIN LAYOUT_

BACK VIEW

ROTARY TORQUE TRANSDUCER WIRING DIAGRAM

RESISTANCE BETWEEN TERMINALS			
A TO F	263 OHMS		
B TO F	263 OHMS		
D TO F	350 OHMS		
A TO B	350 OHMS		

BRIDGE SIGNALS		
A	SIGNAL OUT	
В	SIGNAL OUT	
D	POSITIVE EXCITATION	
F	NEGATIVE EXCITATION	

TRANSDUCER LEAD FOR ETS (not included)

